Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
IEEE Sensors Journal ; 22(18):17439-17446, 2022.
Article in English | ProQuest Central | ID: covidwho-2037824

ABSTRACT

During the Coronavirus Disease 2019 (COVID-19) pandemic, non-contact health monitoring and human activity detection by various sensors have attracted tremendous attention. Robot monitoring will result in minimizing the life threat to health providers during the COVID-19 pandemic period. How to improve the performance and generalization of the monitoring model is a critical but challenging task. This paper constructs an epidemic monitoring architecture based on multi-sensor information fusion and applies it in medical robots’ services, such as patient-care, disinfection, garbage disposal, etc. We propose a gated recurrent unit model based on a genetic algorithm (GA-GRU)to realize the effective feature selection and improve the effectiveness and accuracy of the localization, navigation, and activity monitoring for indoor wireless sensor networks (WSNs). By using two GRU layers in the GA-GRU, we improve the generalization capability in multiple WSNs. All these advantages of GA-GRU make it outperform other representative algorithms in a variety of evaluation metrics. The experiments on the WSNs verify that the proposed GA-GRU leads to successful runs and provides optimal performances. These results suggest the GA-GRU method may be preferable for epidemic monitoring in medicine and allied areas with particular relation to the control of the epidemic or pandemic such as COVID-19 pandemic.

2.
Inf Fusion ; 73: 11-21, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1120030

ABSTRACT

Exploring the complicated relationships underlying the clinical information is essential for the diagnosis and treatment of the Coronavirus Disease 2019 (COVID-19). Currently, few approaches are mature enough to show operational impact. Based on electronic medical records (EMRs) of 570 COVID-19 inpatients, we proposed an analysis model of diagnosis and treatment for COVID-19 based on the machine learning algorithms and complex networks. Introducing the medical information fusion, we constructed the heterogeneous information network to discover the complex relationships among the syndromes, symptoms, and medicines. We generated the numerical symptom (medicine) embeddings and divided them into seven communities (syndromes) using the combination of Skip-Gram model and Spectral Clustering (SC) algorithm. After analyzing the symptoms and medicine networks, we identified the key factors using six evaluation metrics of node centrality. The experimental results indicate that the proposed analysis model is capable of discovering the critical symptoms and symptom distribution for diagnosis; the key medicines and medicine combinations for treatment. Based on the latest COVID-19 clinical guidelines, this model could result in the higher accuracy results than the other representative clustering algorithms. Furthermore, the proposed model is able to provide tremendously valuable guidance and help the physicians to combat the COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL